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1. Introduction. In this article we study the existence and dependence on the
parameter A of solutions to the system

L¥u* = N\ f*(x,u) in
(1.0 u =0 on 9{}
u* >0 inQ,mw=1,...,k,
where u = (u',...,u*), & C R" is a smooth, bounded domain, and for each w,
= Z B — + Z b”(x) e

ij=1 j i=1
is a uniformly elliptic differential operator with Holder continuous coefficients,

and ¢* = 0. Our work has two objectives: first, to extend the results of Cohen
and Keller [4] (see also [8]) on the single equation

Lu = Nf(x,u) in Q)
(1.2) u=0 on 4§}
u>0 on ()

to systems of the form (1.1); and second, to present a more modern viewpoint
on the problem and to exploit results and methods developed since the publication
of [4].

In [4], Keller and Cohen studied (1.2) under the assumptions f(x,0) > 0 and
f(x,u) increasing in u. They showed that (1.2) has a solution for A € (0,\%),
some A* > 0, and constructed a minimal solution by monotone iteration. Under
additional conditions on f they obtained estimates on A*, conditions under which
a solution exists for A = A*, and uniqueness results. Specifically, if f(x,u) is
concave in u, no solution exists for A = \* and the solution for A € (0,\%) is
unique. The convex case is more complicated; in some cases solutions are not
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unique. Results on the convex case have been obtained by various workers; see
(11, [5], [7], and for a survey of results and additional references, [10]. In the
present work, we restrict our attention to results of the type obtained in [4]; we
plan to make further investigations of the convex case.

Our approach to (1.1) follows that taken in [4] for (1.2). The main tools are
the theory of eigenvalue problems for linear operators derived from (1.1) and
monotonicity or comparison arguments. In Section 2, we present results on the
solvability and properties of solutions for

k
Li* =\ m™u’ + h(x)  inQ,
(1.3) v=1

u =0 ond,p=1,..., k.

The recent work of Hess [6] on eigenvalue problems with indefinite weight func-
tions allows us to obtain the results we need to study (1.1) under conditions weaker
than requiring that f*(x,0) > O for all ., all x € Q, thereby extending the results
of [4] even in the case of a single equation. In Section 3, we show that under
suitable hypotheses, (1.1) has a minimal solution for X € (0,\*). A question that
arises here is the definition of positivity. We look for solutions positive in all
components and impose conditions on f*(x,u) so that such solutions exist. This
type of question for linear systems such as (1.3) was investigated in [3]; some of
the results of [3] are used in Section 2. In Section 4, we obtain estimates on A*,
show that the anlution tn (1 1} ic nnir:np for roncave !’!’.‘I‘.lif‘fﬁﬁti‘_"_‘, and that far
concave nonlinearities there is no solution for A = \*, In working with systems,
the conditions we impose on the nonlinearity become more complicated than those
for a single equation. However, our hypotheses reduce to those of [4] or weaker
ones when specialized to a single equation.

Remark on notation. In what follows, we will not explicitly distinguish vec-
tors from scalars by notation. Which type of quantity a variable represents will
either be stated or will follow readily from the context. In our analysis we will
make extensive use of the notion of ordering. Our notation can best be described
in terms of ordered Banach spaces. Let E be an ordered Banach space with pos-
itive cone P; that is, let E be a real Banach space and let P C E be such that
R'PCP,P+PCP,andP N (—P) ={0}. Ifu, v € E, we write u = v if
u—vE€P,and u>vif u — v € P\ {0}. For Euclidean spaces R" we take
P = (R")" for function spaces (typically Sobolev or Holder spaces) we take
P = {u € E:u(x) = 0 on }. We will also use a more specialized notation: if u,
v € CYQ), we will write u >> v if u(x) = v(x) on Q, u(x) > v(x) on Q, and
du/on < du/dn on A, If u, v € [C'(W]* we write u >> v if u* >> v* for all
components of u and v. (Note that u >> 0 does not imply u € int P, since we
may have u = 0 on Q). However, if u >> 0 and v € [C'(Q)J* with v = 0 on
0Q, then u + v >> 0 if ||v|| is sufficiently small. Since we will be dealing with
Dirichlet boundary conditions, the notation “>>” will be quite useful).
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2. The Positivity Lemma. In this section we establish a lemma concerning
the solvability of certain nonhomogeneous linear elliptic systems. To this end, for
p =1, ..., k, let L* be the differential operator

2

2.1) L* == a4x)

ij=1

9 + i b (x) i + c”(x),v
ax;0x; o o,

where x € (), a bounded domain in R" with smooth boundary d{). Assume that
the functions aj, b}, c* are of class C*({}), that

n

> atomm; = Kl

ij=1

where 7 = (n;,...,m,) € R" and K* > 0, and that ¢*(x) = 0 for all x € Q.
Let M(x) be a k X_k matrix with m"” of class C*(Q}) and m™(x) = 0 for all
x € Q. Let h:Q — (R™)! be of class C*({).
We now consider the system

Lu=\XMu+ h, xEQN

2.2)
u =0, x € 9Q),

where

Lt u'

-0
L= . , u= ,
0
L* ut

and for each p, u* € C***(€)). Our result is

Lemma 2.1. (i) Suppose there is xo € Q and w € {1,...,k} such that
m**(x,) > 0. Then the system

Lv=\Mv, x€
v=0, x €90

(2.3)

has a smallest positive eigenvalue \y admitting a nonnegative solution v. Fur-
thermore, if A < Ny, (2.2) has a unique nonnegative solution for any h = 0. If
N = N, (2.2) has no nonnegative solution provided h*(x,) > 0 for some x, € (),
p=1,..., k.

(ii) If, in addition, there is x, € ) such that M(x,) is irreducible and
m*™(x) > 0 for p = 1, ..., k, (2.2) has a nonnegative solution for h > 0 only
in the case N < \g. In this case, the solution u is such that u >> 0.

Proof. (i) That (2.3) has a smallest positive eigenvalue admitting a nonnega-
tive solution is the content of [6] and [3]. Theorem 2.16 of [9] may then be
employed to assert existence of a unique nonnegative solution in case A << \,.
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Suppose now we have a nonnegative solution in case A = A, and % is as hypoth-
esized. Consider the equivalent system

1 . 1
2.4 “u=L"'"Mu+=L"'h,
N A

The spectral radius of the operator L™'M is 1/X,.

The Krein-Rutman theorem guarantees the existence of a positive linear func-
tional f* such that (L ~'M)* f* = (1/\o) f*, where (L™'M)* is the dual of L™'M.
Then

-l-f*(u) -1 fH*u) + ! L'k
A No DY '

Since u = 0, f*(u) = 0. Hence (1/N — 1/N)f*(u) = 0.

However, the hypothesis on h guarantees that f *(L"'h) > 0, a contradition,
which establishes (i).

(ii) Note that M* '(x,) is a matrix which is positive in all its entries, by [2, p.
27]. Observe then that if # > 0, L™'h > 0 and (L™'h)* >> 0 for some p, €
{1,...,k} by the strong maximum principle. Then [M(L™'h)]*(x;) > O for p = w,
since m"'™*(x,) > 0 and also for some p, € {1,2,...,k}, po # W, since M (xp) is
irreducible. The strong maximum principle implies that L' preserves component-
wise positivity. In fact, [L7'M@L7'R)]* >> 0 for p = w,, 1. We now repeat the
aronment annlving M ance maore. We obtain that [IM(L7T'MMIL7'Ix) > 0
for . = g, B2, and pa, B3 ¥ by, Ko. A repeated application of the strong max-
imum principle guarantees that [(L~'M)*(L™'h)]* >> 0 for p = ,, p, and ps.
After (k — 1) iterations, we can guarantee that (L™'M)"'(L™'h) >> 0. Hence
(L™'M)YYL'h) > ev, for some € > 0, where v >> 0 satisfies (2.3) with A =
\o. By considering (2.4) and applying Theorem 2.16 of [9], we see that (2.2) has
solutions for # > 0 if and only if A < \q. That such solutions are componentwise
positive follows as in the proof of Lemma 3.1 of [3].

Remark 2.2. Lemma 2.1 is the system analogue to the Positivity Lemma of
[4]. Our proof shows that the hypothesis in [4] may be reduced to the assumption
that the coefficient function p is positive for some x, € ().

Corollary 2.3. Suppose that M has the form

M0 - - - 0

0 M? .
M= ,

0 . .. MV

whsre M is an r, X r, matrix satisfying the hypothesis of Lemma 2.1(ii), with

=1 = k. Let Ny (M") denote the smallest eigenvalue of the system
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(2.5 L w = \M"w,
where
LS'y+l
0
LY =10
Lﬁ'y+w
and
0, ifAa=1
oy = if2<vy=N.

’.j,
i=1
Then if K" # 0 for some m € {1,...,r,}, (2.2) has a nontrivial solution w with

u8y+l

#0

u5y+ry

only if N < N(M"). Furthermore, in this case, u®"*"(x) > 0 for x € , and
m=1,...,r,.

3. Main results. In this section we discuss the basic existence theory for
positive solutions of the system

Lu = \f(x,u) xEN
u=20 x € 09,

where L and () are as in Section 2, and f = (f',...,f*)". We take the approach
used by Cohen and Keller [4] for a single equation, namely monotone iteration.
We assume that f(x,u) is of class C* in both x and u and satisfies the following
hypotheses:

F1 f,): R — (R for all x € ).

F2 For each u € {1,...,k} there is a sequence vy, v, ... vy in {1,...,k} with
vy = W such that £*(x,0) > 0 for some x € Q, and if u:Q— (R*)* with
wx)>0onQforj=0,...,J,J =N~ 1, then f**'(x,u) > 0 for some
x € Q.

(3.1)

F3 f *(x,u) is nondecreasing in u” for v # .

F4 There is a constant K = 0 such that for all w, if ¥* = &" = 0 for v # p and
u* = @, then

Free,u) — o) = — K@ — ).
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Conditions F3 and F4 are the monotonicity hypotheses needed to obtain an
increasing sequence of iterates. Condition F2 is a nonlinear analogue of the
irreducibility condition required for matrices in Section 2; it guarantees the
positivity of all components of the solution, but is weaker than requiring
f*(x,0) > 0 for all p.

Example. The system
—Au' = N1 + u)
~Au® = Nu' + o)
satisfies F1-F4, even though f*(x,0) = 0. For the system
—Au' M1 + uh)
—Au? = \u?,

condition F2 fails and the system decouples into two single equations, the second
of which has only the zero solution for A small.

A slightly more general problem similar to (3.1) is
L¥u" = N\ f¥(x,u) nQ,u=1,...,k
u=20 on 9{}.

(3.2)

We can obtain some information about (3.2) by studying (3.1); specifically, if
the k-tuple ol parameters ()\‘,. . .,)\*) varies along a ray, we may choose a unit
vector e in the direction of the ray, and write A\* = Ae®*. Then (3.2) corresponds
to (3.1) with f* replaced by e*f*.

We will study the set A of A € R such that (3.1) has a solution positive in all
components. It is clear by the maximum principle that when F1 holds, A > 0 for
all A € A. We will follow [4] and let N* = sup A. In what follows we will see
that either A = (0,A*], or A = (0,\*), with the inclusion of \* in A depending
on the convexity or concavity of f(x,u).

A criterion for existence of solutions to (3.1) which are positive in all com-
ponents is given by the following result, which is an extension to systems of
Theorem (3.2) of [4].

Theorem 3.1. Suppose that f(x,u) satisfies F1-F4. The iteration scheme
u, =0,
3.3) Lu,oi + NKuyoy = N f(x,u,) + Ku,) in Q)
Upsr =0 on 9}

produces a sequence which is increasing in each component. A number X > 0
belongs to A if and only if the sequence {u,} is uniformly bounded; in that case,
the sequence converges uniformly to a solution w(\,x) of (3.1). The solution
u(\,x) is minimal in the sense that u(\,x) = u(x) for any other positive solution
u.
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Proof. The maximum principle insures that u}' = 0 for all n, p since fsatisfies
F1. Thus u} = uy = O for all p. Suppose ulf = uy | for all w. Fix w and let
i, = u, for v # w, @y = ul_,. Then we have

(3.4) (L* + NK)(ubyy — uly
= }\[fu(xaun) - fp.(-x,un—]) + 1{("{1’;L - u#—l)]
= NS 0w = fA0a) + ff0m) — feou,-) + K (uy — uy)]

Butfp‘(x,un) - fu(x,an) = _.K(u‘:; - ut:—l) by F4, fu(xvlzn) - fu(x>un—-1) =0 by
F3,s0 (L* + AK)(uh—; — ul) = 0in Q. Since ul,, — v = 0 on 9Q), the maximum
principle implies that u,, = u¥. Hence the sequence increases, by induction. If
w is such that F2 holds with vy = p, that is, f*(x,0) > 0 for some x € (), then
since (L* + AK)ul = A f*(x,0) in Q and u} = 0 on 9{), the strong maximum prin-
ciple implies that u{(x) > 0 in {). Since the sequence increases, uf(x) > 0 in Q
for all n. By F2, at least one w must have f*(x,0) > 0 for some x. Thus u, is
positive in at least one component; also, if «°(x) > 0 in Q then f*'(x,u;) > 0 for
some x € () 50 u;'(x) > 0 in ) by the strong maximum principle, and so on, so
that after finitely many iterations all components of u, are positive in .

Assume now that the sequence {u,} is uniformly bounded above componentwise
by v. Then for each x, there is a u(x) < v(x) such that u,(x) 1 u(x). Since
u, — u pointwise with u bounded, A( f(x,u,) + Ku,) — AN f(x,u) + Ku)
pointwise and hence in L” for any p € (1,). Since the operators L* + \K
with  Dirichlet boundary conditions can be inverted on L”, and
(L* + NK)™":L? — W?*”, we have that u, — u in W*?, and hence (by the
embedding properties of W*”) in C'*®. But then

M) + Kuy) — N f(xe,u) + Ku)

in C* so since (L* + AK)™':C* — C***, u, — u in C*** and it follows by
passing to the limit in (3.3) that u is a solution of (3.1), which we denote by
u(\,x).

If w is a solution to (3.1) which is positive in each component, then

wh > Uy = 0,
and if w* = u¥;, then
(L* + NEYW* — ulyy) = M fHew) — f0oum,) + K™ + ul))

so arguing as in (3.4) and the discussion following, we have w" = ul,,. Thus by
induction, w is an upper bound for the sequence u, and since w = u,, w"(x) =
uP(\x) if w(\,x) = lim u,(x).

Most of the remaining results of this section are based on the idea of comparing
solutions of (3.1) for different choices of f or different values of . The following
lemma is crucial:

Lemma 3.2. Suppose that f(x,u) satisfies FI-F4 and F(x,v) is such that
whenever v=u = 0
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Fx,v) + Kv= f(x,u) + Ku.
If v(\,x) is a solution of
Lv = N\NF(x,v) in )
v=10 on 38}
with v = 0, then X € A for (3.1) and u(\,x) = v(x).

(3.5)

Proof. We compare v with the iterates u, constructed in proving Theorem 3.1.
First, v = uy = 0. Then if v = u,, we have

(L" 4+ ANK)(@* — i) = NF*(x,0) — fHOoou,) + K@ —u)] =0

in ), with v — u, = 0 on 3{}, so that v* = ul,,. Hence, by induction, v provides
an upper bound for {u,} so by Theorem 3.1, A € A with v(x) = u(\,x).

We can now show that A is an interval and u(\,x) is nondecreasing compo-
nentwise in \.

Theorem 3.3. Suppose that f(x,u) satisfies FI-F4 and that \' € A. Then
(0,\") C A. Further, u™(\,x) is strictly increasing in \ for all .

Proof. Let F(x,u) = (\'/N)f(x,u) where 0 < A < \'. Then if v = u and we
let & = u’ for v # w, " = v", we have

(/N fHx) + Kot = [fHou) + Ku)
=\ /NCH) = Freum) + fHGn = o) + K@t — u®)
=0

so that F(x,v) satisfies the hypotheses of Lemma 3.2, and hence A € A with
u\',x) = u(h, x).

Now let w* = y*(\',x) and w’ = y"(\,x) for v # w. We have w” > 0 in () for
all v, and also, by F3 and F4,

(L* + NEK)(@* (N, x) = u"(\, x))
= N fHOLuN,x) = N fHu(h, x)
FAK W\, x) = ut(h, X))
= N fHoouN,x) — N fHxw)
+ (N = N fHow) A Mw) = A fMOou(N, x))
+ MKW\, x) ~ u* (N, x)
= (N = N f"x,w).

But by F2 and the positivity of w, it follows that f*(x,w) > 0 for some x € ).
Hence, u*(\',x) > u™(\,x) in Q by the strong maximum principle.

By Theorem 3.3 we know that A is an interval. The remainder of this section
and the next will be devoted to estimating \* = sup A.
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Corollary 3.4. Suppose that f satisfies FI-F4 and there exist a function
h:Q — RH and matrix M = (m*(x))) satisfying the hypotheses of part i) of
Lemma 2.1 such that for each u, v with v = u = 0, we have forx € Q, p = 1,

..., k, that .

(3.6) R + Kub < BMx) + D, mP (e’ + Ko™,

=1
Then N* = A\y(M) where N(M) is the first eigenvalue for (2.3).

Proof. If A < Ag(M) then by Lemma 2.1 the problem Lu = Ah(x) + M(x)u)
in Q, u = 0 on 3{, has a solution with each component nonnegative. Then Lemma
3.2 implies that (3.1) has a positive solution for that value of A. Hence, \* =
No(M).

Remark. If we can choose M = 0 then we may set Ay(0) = o and the result
remains true.

Corollary 3.5. Suppose that f satisfies FI-F4 and there exist a function
h:Q — R, with h*(x) > 0 for some ., some x € Q, and a k X k matrix
M = ((m"(x))) satisfying the hypotheses of part (ii) of Lemma 2.1 such that for
each u, vwithv = u =0, we have forx € Q, u. = 1, ..., k that

k
(3.7) RG) + Y meou” + Kut < fH(xu) + Kok,

=1

Then \* = \(M).

Proof. The hypotheses of Lemma 2.1, part (ii), together with the fact that
h*(x) > 0 for some x € () for some ., imply that F'(x,v) = h(x) + M(x)v satisfies
F1-F4. If A € A, it follows by Lemma 3.2 that the problem Lu = \Nh + AMu
in Q, u = 0 on 9(), has a nontrivial solution. But by Lemma 2.1, such a solution
is only possible for A < N\y(M), so N* == N(M).

In general, (3.1) may not have positive solutions unless f*(x,0) > 0 for some
v and some x € (). This is noted in [4] for the single equation case. Another
possibility is that condition F2 may not hold for all . In that case, our solution
u(\,x) might have ¥*(\,x) > 0 in Q only for those values of w for which F2 is
satisfied. In any case, we can weaken the conditions on the matrix occurring in
Corollary 3.5 by using Corollary 2.3. The proof of the following result is the
same as that of Corollary 3.5.

Corollary 3.6. Suppose that f satisfies FI-F4, and M = (m™(x))) isa k X k
matrix satisfying the hypotheses of Corollary 2.3. Let d; be as in Corollary 2.3,
and suppose that h:Q — (R is such that for each i, h*(x) > 0 for some x in
Q for some p. = d; + m, m € {1,...,r;}. If for each v with v = u = 0 we have

!
(3.8) h¥(x) + 2 m*'Ou” + Ku* < f*x,v) + Ko*

v=1]

then \* = Ny (M) fory =1, ..., N.
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Remark. The major advantage of Corollary 3.6 is that it is possible to apply
it in situations where, for example, f*(x,u) = f*(x,u™). Since Lemma 2.1 re-
quires irreducibility on M, the sum ZL , m"*"u” contains at least one nonzero term
other than m**u*, so if f*(x,v) depends only on v*, it is impossible to obtain
inequality (3.7). However, a diagonal matrix can satisfy the hypotheses of Cor-
ollary 2.3, and could be used to obtain (3.8).

4. Concave and convex nonlinearities. In this section we shall require that
fbe C*in x and u. Let

af“(x,m)"

JuP

Julx,u) = (

ao,p=1
We then make the following assumptions:

of *(x,u)
ouP

B5 Ifu=0, =z0fora,B=1,...,k and for all x € Q.

F6 If u >> 0, f,(x,u) is a nonnegative irreducible matrix with

9 f*(x,u) S

0 fora=1,..., k.
ou®

We now have

Theorem 4.1. Let f(x,u) satisfy F1, F2, F5 and F6, and let \* = sup A,
where A is as in Theorem 3.1. Then for each N € (O\%), A = Wi (N) where
miN) = pd £, u(N, X))} is the principal eigenvalue of

L= pf,(,u, )0, x€Q
Y =0, x € Q.

Proof.  First observe that if {\,};., is a monotone increasing sequence of pos-
itive numbers converging to A € A, u(\,,x) is a strictly increasing sequence of
functions bounded above by u(\,x) by Theorem 3.3. It follows as in the proof of
Theorem 3.1 that u(\,,x) converges uniformly to a componentwise positive func-
tion u(\,x), which solves (3.1), and is such that u(\,x) = u(\,x). Hence
u(\,x) = y(\,x) and u is left-continuous in A on A.

Now let 0 < \' < A € A. Define, as in [8],

“4.1)

1
SN x) = f Julx,0u(h,x) + (1 — B)u(\',x))dH.
0
Note that
i Bu(\,x) + (1 — Oul\'
T S, 0u(N, x) + (1 — 8)u(\',x))

= [fulx, 00N, x) + (1 ~ 0)u(N',x))] - [N, x) — u(\',x)].
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So
Fou(n,x) — fOcu\',x)

1
= (f [fulx,Bu(h, ) + (1 - O)M(K',X))]d(?) (N, x) — u\',x)
0

= fuM N x) - (N, x) — (N, x)).
Hence
Llu(\,x) = u\',0)] = N fG,u(N,x) — N fu, x)
= NN x) - (h,x) — (N, x)) + (N = ) fCou,x)).

Since f satisfies F5-F6, f,(\,\', ) satisfies the hypotheses of Lemma 2.1. Hence
A < i\, 0)} since u(N,x) — u(\',x) >> 0 on Q. Since u(\',x) converges
to ¥(\,x) uniformly on ) as A’ 1 \, it follows that

JullN )= f-u(h,)  (strongly)

as operators on [C “(Q)]"'. (The details of the proof of this result are as in the proof
of Theorem 4.4). Thus {L™'f,(\,\’, “Yh 12 forms a left-continuous (in the strong
operator topology) family of compact positive operators on [C*(Q)]* with

L7 OGN, )= L7 u(h, ) as\' 1\
It follows then from a result of Nussbaum [11] that

w{ AN 0 = wl fe N, )} as A A
Thus A = p,{£(x,u(\, X))}

In order to examine the function w;:A — R more closely, we need further

hypotheses on f. To this end, we shall say that f(x,u) is concave if f satisfies F5
and F6 and

ar” ar"
F7 X,W) < x,w

e (x,w) o (x,w")
forw>>w'=0ifa, B =1, ..., k, with strict inequality if o = B.

k

200
( (x,w)> is negative semidefinite for x € () and w = 0,
B.y=1

duPau”
foreacha =1, 2, ..., k.

Remark. Concavity is the geometric requirement that f* lie below any of its
tangent hypersurfaces for each a = 1, ..., k. This requirement can be expressed
analytically without the assumption that f is C*. However, such an expression is
complicated, and confers little advantage in view of the fact that f must be C'*®
in (x,u) in any case. One should also observe that in the single equation case [8],
F7 alone reflects concavity. However, F7 and F8 coincide when fis C? in this
situation.
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Analogously, we say that f is convex if f satisfies F5 and F6 and

afr" af" ,
F9 b ) =g )
forw>>w =0ifa, =1, ..., k, with strict inequality if & = B.

2ro k
F10 < (x,w)> is positive semidefinite for x € Q) and w = 0,
duPou’ By=1

foreacha=1,2, ...,k

Notice that if u >> 0, f*(x,u) = f°(x,0) + falx,u¥)u, where 0 << u* << u,
If f is concave, it follows that

fleeuw) << f(x,0) + f,(x,0u,  ifu>>0,
and if f is convex, that
fl,u) >> f(x,0) + fu(x,0u for u >> 0.

In the concave case, if f also satisfies F1 and F2, Corollary 3.4 implies
O, (f,(x,00) C A and p1(0) = p(fu(x,0)) = A%, In case fis convex, F1 and
F2 hold, and also f,(x,0) satisfies (ii) of Lemma 2.1, M* = ,(0) by Corollary
3.5. (Note that in the concave situation f, (x,0) automatically satisfies (ii) of Lemma
2.1. In the sequel, this extra condition will be tacitly assumed in the convex case.)

Sharner pctimatee are given in
H o

Corollary 4.2. Suppose that f (x,u) satisfies F1, F2, F5, F6, (F7, F8) or (F9,
F10). Then if A = (O,\%), () is an (increasing) (or decreasing) function of A
on this interval. Furthermore, p,(\) < N* if f is concave and p,(\) > \* for f
convex.

Proof. Suppose f(x,u) is concave and let 0 < N < A’ < \*. Theorem 3.3
implies that u(\,x) << u(\',x). Let  >> 0 be a solution of

Ly = py(N) fuCe,uN 0 inQ
=0 on 3Q).
Then

L = ) fule, w00 + LG, x) = fuleuN, 01

Hypothesis F7 implies [f, (x,u(\,x)) — f,(x,u(\' ,x))]¥ is nonnegative and nontri-
vial, Lemma 2.1(ii) then implies that w;(\) < w;(\'). An analogous argument will
give pw(\) > p(\") in case F9 holds.

Suppose f'is convex and w;(Ap) = \* for some Ny € (0,A*). Then if A € (\g,A*),
wi(A) < N*. Let A € (\p,A*) and choose ' € (1,(A), A*). Then A = pu,(\) < N\’
implies (M) < w(\) < A, a contradiction since \' = p,(\'). Hence
w(\) > \* for all A € (O,A%).

Suppose f is concave and &(x) >> 0. Then
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k 5 Fe
(4.2) fUx,d(x) = fox,uhx) + 2 aiﬁ (r,u(\ %)) - [HP(x) — wP(\ %))
B=1
L S G W @) [Pe) — P11 - [67(x) — w(\,0)]
2552, duPow S S
where w* = 0, a = 1, 2, ..., k. F8 implies that

k 9 o
Foed@) = foui0) + # G\, 2) - [9PG) — wP(\,2)]
B=1

and hence f(x,¢) = f(x,u) + fu(x,u)(d — u). Then F7 yields
(4.3) fx9) = f(x,0) + [fux,0) — fulx.)]u + fulx.0)d.

It then follows that p,(\) = A* for A € (O,\*). Since w,(\) is strictly increasing,
it is then necessarily the case that p;(A) < A* on A.

We next consider the behavior of u(\,x) and p;(\) as A T A* in the case of

concave nonlinearities. The following lemma is an extension to systems of part
of Theorem 1.1 of [5].

Lemma 4.3. Suppose that f(x,u) satisfies F1, F2, F5 and F6, that \* < o,
and there exists a constant M such that suplu(\,x)] < M for N € A. Then
N E A and u(h,x)— u(\*,x) as A T NE

Proof. The proof follows that of Theorem 1.1 of [5]; it is also related to the
proofs of Theorems 3.1 and 4.1 of the present article; so we will only sketch the
argument. Suppose suplu(\,x)| < M; then |lu*(\,x)||,q, is uniformly bounded in

Q

\ for any p, p, so that f(x,u(\,x)) is uniformly bounded in L7 for any p.
Standard elliptic a priori estimates then imply that u(\,x)) is uniformly bounded
in (W>?(Q))* for any p, and hence by the Sobolev embedding theorem in
(& 1““’i(ﬂ))" for any o € (0,1). Hence, f(x,u(\,x)) is uniformly bounded in
(C*())*, and thus u(\,x) is uniformly bounded in (C3**(Q))*. If we choose a
sequence N, T A*, we observe that {u(\,,x)} is a componentwise increasing se-
quence that has a subsequence convergent in (C*(2))* and hence, via the differ-
ential equation and standard elliptic estimates, in (C re()))*. It follows that the
limiting function of the subsequence satisfies (3.1) with A = ¥,

Remark. 1In [5], the result corresponding to the above lemma is used to study
convex nonlinearities in the case of a single equation. In such a case, it is some-
times possible to give conditions on the nonlinearity which imply a priori bounds
on the solution; see for example {11, [5]. Similar arguments could be made for
systems in some cases, but we shall not attempt to do so here.

In the case of a single equation, the solution set for convex nonlinearities can
be much more complicated than that for concave nonlinearities. Specifically, the
solution in the concave case turns out to be unique, but for some convex nonlin-
earities the existence of multiple solutions can be shown. Results in that direction
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for a single equation are given in [5], [7], [10]. In the present article we do not
consider the behavior of w;(\) and u(\,x) as A T \* for the convex case, nor the
question of multiple solutions in that case. We intend to study such questions in
later work. We have the following results in the concave case:

Theorem 4.4. Suppose that f (x,u) satisfies F1, F2, F5, F6, F7, and F8. Then
lim p,(A) = N5, N* & A, and if \* < o, suplu(\,x)] — © as N 1 N\*.
NP A* Q

Proof. As shown in the proof of Theorem 4.1, u(\,x) is continuous from the
leftin \ in (C(Q))", hence (via elliptic a priori estimates as in the proof of Lemma
4.3) in (C'"*({1))*, so that the operators L™'f,(-,u(\, -)) form a left-continuous
family of compact positive operators on (C*({)))*. It follows by a result of Nuss-
baum [11] that w,(\) is left-continuous. From Corollary 4.2, we have p,(A) < \*
and from Theorem 4.1 we have A =< p;(\), so by the left-continuity of j,(\), we
have liTm wi(h) = N*,

ATA*

Suppose that A* € A; then consider u(A*,x). Since w;(\) and u(\,x) depend
continuously on the left on N\, we have \* = p{f, (x,u(\*,x))}. Also, by the
monotonicity of u(\,x), we have u(\,x) = u(\*,x) for all A € A. If ¢ and ¢ are
vectors in (R*)*, & >> 0, then arguing as in (4.2), (4.3) leads to the inequality

“4.4) fd) = f(x,0) + [fux,0) = fulle. D + fulx )

with £(x,0) + [£(x.0) — fx. )W >> 0. If we choose & € (C***(QN* with
¥ >> u(\*,x), then arguing as in the proof of Corollary 4.2 yields

p“l{fu(-x’ll!)} > l‘l‘l{fu(x:u()\*,X))} = \¥,

But (4.4) and Corollary 3.4 imply that ,{f,(x,{)} = \*; this is a contradiction,
so M* & A. Finally, suppose \* < oo; if

sup sup [u(\,x)| = M < =,

AEA x€Q

then by Lemma 4.3, A* € A. By the above argument, A* & A, so we must have
sup sup |u(\,x)] = . Since ' > \ implies u(\',x) >> u(\,x), it follows
AEA xEQ
sup [u(\,x)| = w as N T \*.
xE€Q

We now consider the question of uniqueness for concave and certain other non-
linearities. As noted previously, the question of uniqueness in the convex case is
much more complicated and we will not pursue it here.

Theorem 4.5. Suppose f(x,u) satisfies F1, F2, F5, F6, and F7. Then the
minimal solution u(\,x) is the only positive solution of (3.1) for A € A.

Proof. Fix N € A; if u is any solution to (3.1) for that value of \, u = u by
Theorem 3.1. We have by F7 and (3.1) that
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4.5) L(u—uw) = N[0 — fx.u)
1
= )\[f Julx,0u + (1 — e)u)de] “(u— u)
0

= N, u)(u — ) + gx)

where

1
glx) = K[[ Julx,0u + (1 — O)u)d6 - — f.,(x,u)](u —u).
0

We have f,(x,w) nonnegative irreducible for w = 0, so that the integral in the
second line of (4.5) is a nonnegative irreducible matrix. It follows by the strong
maximum principle that u >> y. Thus we have

Bu+(1—-0u>>0u+ (1 —0u
for all 6 € (0,1], so

I

u

a o

(x,0u+ (1 -0 =

(o, ).

ouP ouP

Hence

1 1
U fux,0u + (1 — O)u)de}(u —u) = [ J fu(x,u)de](u —u) = f,0,u)(u— u),
0 0

so that g(x) = 0.

By Theorem 4.1, A = p,(\); if A < p(\), then since u — u = 0 on 94}, it
follows by Lemma 2.1 thatu — y = 0. However, u — y = 0 since y is the minimal
solution, so u = y. If A = w;(\) it follows as in the proof of Lemma (2.1) that
(4.5) can have no componentwise nonnegative solution with g(x) = 0 unless
g(x) = 0; but then F7 implies u = u.

The following result implies uniqueness in some cases where the nonlinearity
need not be concave:

Theorem 4.6. Suppose f{x,u) satisfies F1, F2, F5, F6, and for some matrix
M (x) satisfying the hypotheses of (i) of Lemma 2.1, we have

n
I _ ey
du’

foru € (E“r)k, x € Q. Then the minimal solution u(\,x) is the only solution of
(3.1) for A € (0, y(M)).

Proof. Arguing as in (4.5), we have for any fixed A € (0,\y(M)) and any
solution u other than y that u — y = 0, and

L —w)=Nfxuw — fOw)] =ANM@x)(u — u) + gk)
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with .
g(x) = )\[f fulx,0u + (1 — 0)u)d6 — M(x)](u -y =0.
0

Hence, since u — u = 0 on 8(), it follows by Lemma 2.1 that u ~ y = 0 so that
u = u as desired.
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